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Abstract We present a general method of studying the transport process X(t), t ≥ 0, in
the Euclidean space R

m, m ≥ 2, based on the analysis of the integral transforms of its dis-
tributions. We show that the joint characteristic functions of X(t) are connected with each
other by a convolution-type recurrent relation. This enables us to prove that the characteris-
tic function (Fourier transform) of X(t) in any dimension m ≥ 2 satisfies a convolution-type
Volterra integral equation of second kind. We give its solution and obtain the characteristic
function of X(t) in terms of the multiple convolutions of the kernel of the equation with
itself. An explicit form of the Laplace transform of the characteristic function in any dimen-
sion is given. The complete solution of the problem of finding the initial conditions for the
governing partial differential equations, is given.

We also show that, under the standard Kac condition on the speed of the motion and
on the intensity of the switching Poisson process, the transition density of the isotropic
transport process converges to the transition density of the m-dimensional homogeneous
Brownian motion with zero drift and diffusion coefficient depending on the dimension m.

We give the conditional characteristic functions of the isotropic transport process in terms
of the inverse Laplace transform of the powers of the Gauss hypergeometric function. Some
important models of the isotropic transport processes in lower dimensions are considered
and some known results are derived as the particular cases of our general model by means
of the method developed.

Keywords Random motion · Finite speed · Transport process · Random evolution ·
Characteristic function · Bessel function · Convolution · Volterra integral equation · Fourier
transform · Laplace transform · Multidimensional Brownian motion · Initial conditions

1 Introduction

The diffusion processes with finite speed of propagation are highly appropriate models for
describing various real phenomena in statistical physics, hydrodynamics, biology and other
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fields. The diffusion with finite speed of propagation is generated by random motions of a
particle that moves with finite speed in some phase space. Such a type of random motion
is referred to as the transport process, random flight or, in a more general sense, random
evolution. While the finiteness of the velocity is the basic feature of such motions, the models
differ with respect to the way of choosing the new directions (the scattering function) and
the dimension of the phase space.

The one-dimensional models of random evolution (Goldstein-Kac telegraph process and
its numerous generalizations) have been intensively studied by many researchers and a great
deal of results were obtained. As to the multidimensional counterparts of this process is
concerned, many efforts were made to extend this model of random motion to higher-
dimensional spaces R

m, m ≥ 2. The main difficulty in doing so steams from the fact that, in
contract to the one-dimensional case, there exists a continuum of possible directions in any
other dimension m ≥ 2. For this reason the idea of discretization of the continuous spectrum
of directions came to dominate in this field of research for many years. Now there exists
a great variety of the works devoted to random motions with a finite number of directions
(for the most general model of a cyclic random motion in arbitrary dimension see the recent
paper by Lachal [10] and the bibliography therein).

While the motions with a finite number of directions can be of interest in some specific
models, the evolutions with a continuum of directions are, undoubtedly, much more natural
and practically useful. That’s why the problem of describing the transport processes with a
continuous spectrum of directions in higher dimensions m ≥ 2 is of a special importance.

In the study of such processes the most desirable goal is, undoubtedly, their explicit
distributions in those cases (very few indeed), when such distributions can be obtained. The
transition density of a two-dimensional random motion has been derived by Stadje [15] by
means of recursive arguments. The similar result for a planar isotropic transport process
was given by Masoliver et al. [11] by means of recursive arguments and Fourier-Laplace
transforms. The same result has been derived by Kolesnik and Orsingher [7] by using the
characteristic functions techniques and reobtained in Kolesnik [6] by means of some specific
properties of the wave propagation in the plane.

A three-dimensional transport process with an arbitrary bounded scattering function was
studied by Tobulinsky [17, Chap. 2, pp. 35–60], and the transition density of the process was
given in terms of the resolvent of an integral operator. The similar three-dimensional random
motion with the uniform choice of directions was examined by Stadje [16] and the transition
density of the process was given in the form of a fairly complicated integral with variable
limits, which seemingly cannot be explicitly evaluated in terms of elementary functions.

A four-dimensional isotropic transport process has recently been studied by Kolesnik
[3] and by Orsingher and De Gregorio [12] and the transition density of the motion has
been obtained in a fairly simple analytical form by means of the characteristic functions
techniques.

These works can be considered as the successive steps toward the most desirable goal,
namely, constructing a general theory of the distributions for transport processes in the
Euclidean spaces R

m, m ≥ 2, and, in a more general setting, on the manifolds. However,
the behaviour of such random motions in diverse Euclidean spaces is a genuine enigma. The
effect of dimensionality is the core of this puzzle. It’s hard to explain the considerable distin-
guishes in the forms of the transition densities of transport processes in different dimensions.
While in the two- and four-dimensional cases the transition densities have fairly simple ana-
lytical forms, the three-dimensional transition density has a very complicated integral form
and, apparently, cannot be expressed in terms of elementary functions.

The principal aim of this paper is to link together all the known particular models of the
random motions at finite speed in the Euclidean spaces R

m, m ≥ 2, and give the most general
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formulae applicable in any dimension. Our goal is to present an unified approach to the
problem of describing the transport processes based on the analysis of the integral transforms
of their distributions. The main tools of our research are the characteristic functions (Fourier
transforms) of the distributions involved as well as their Laplace transforms.

The paper is organized as follows. In Sect. 2 we consider a m-dimensional isotropic
transport process X(t), t ≥ 0, performed by a particle that moves with constant finite speed
c in the Euclidean space R

m, m ≥ 2, and whose motion is controlled by a homogeneous
Poisson process of rate λ > 0. At the Poissonian instants the particle takes on the new direc-
tion with uniform law on the unit sphere. The main result of Sect. 2 states that the joint (as
well as conditional) characteristic functions (with respect to the number of the Poissonian
events that have occurred by time t ) are connected with each other by the convolution-type
recurrent relations. This enables us to derive some very important relations for the Laplace
transforms of the joint and conditional characteristic functions.

In Sect. 3 we derive a formula for the conditional characteristic functions of X(t), t ≥ 0,
in terms of the inverse Laplace transform of the powers of the Gauss hypergeometric func-
tion. We obtain, as the particular cases of our general model, the explicit forms of the
conditional characteristic functions for the two- and four-dimensional isotropic transport
processes previously obtained by other methods in the works mentioned above. The three-
dimensional case is also analyzed by our techniques.

In Sect. 4 we obtain a very important result stating that, in any dimension m ≥ 2, the
characteristic function H(t) of the process X(t) satisfies a convolution-type Volterra integral
equation of second kind with continuous kernel. We solve this equation and give its solution
(which is unique in the class of continuous functions) in terms of the multiple convolutions
of the kernel of the equation with itself. An explicit form of the Laplace transform of H(t) is
presented. We also give the complete solution of the problem of finding the initial conditions
for the partial differential equations governing the isotropic transport processes.

In Sect. 5 we study the limiting behaviour of X(t). We prove that, under the standard Kac
condition on the speed c of the motion and on the rate λ of the governing Poisson process,
the transition density of X(t) converges to the transition density of the m-dimensional ho-
mogeneous Brownian motion with zero drift and diffusion coefficient depending on the
dimension m.

In Sect. 6 we consider a non-symmetrical random motion and give the non-symmetrical
counterparts of the main formulae obtained in the previous sections for the isotropic trans-
port processes. Surprisingly, the majority of the results valid for symmetrical random mo-
tions can easily be extended for the non-symmetrical case.

In Appendix we prove two auxiliary lemmas which have been used in our analysis.
The main results of this paper were announced in Kolesnik [5].

2 Structure of Distribution and Recurrent Relation

We consider a particle starting its motion from the origin 0 = (0, . . . ,0) of the space R
m,

m ≥ 2, at time t = 0. The particle moves with constant, finite speed c (note that c is treated
as the constant norm of the velocity). The initial direction is a random m-dimensional vector
with uniform distribution (Lebesgue probability measure) on the unit sphere

Sm
1 = {

x = (x1, . . . , xm) ∈ R
m : x2

1 + · · · + x2
m = 1

}
.

We note at once that here and thereafter the upper index m means the dimension of the space
in which the sphere Sm

1 is considered, not its own dimension which, clearly, is m − 1.
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The particle changes direction at random instants which form a homogeneous Poisson
process of rate λ > 0. At these moments it instantaneously takes on the new direction with
uniform distribution on Sm

1 , independently of its previous motion.
Let X(t) = (X1(t), . . . ,Xm(t)) be the position of the particle at an arbitrary time t > 0.

In this section we concentrate our attention on the conditional distributions

Pr{X(t) ∈ dx | N(t) = n}
= Pr{X1(t) ∈ dx1, . . . ,Xm(t) ∈ dxm | N(t) = n}, n ≥ 1

where N(t) is the number of Poisson events that have occurred in the interval (0, t) and dx is
the infinitesimal element in the space R

m with the Lebesgue measure μ(dx) = dx1 . . . dxm.
At any time t > 0 the particle, with probability 1, is located in the m-dimensional ball of

radius ct

Bm
ct = {

x = (x1, . . . , xm) ∈ R
m : x2

1 + · · · + x2
m ≤ c2t2

}
.

The distribution Pr{X(t) ∈ dx}, x ∈ Bm
ct , t ≥ 0, consists of two components. The singular

component corresponds to the case when no Poisson event occurs in the interval (0, t) and
is concentrated on the sphere

Sm
ct = ∂Bm

ct = {
x = (x1, . . . , xm) ∈ R

m : x2
1 + · · · + x2

m = c2t2
}
.

In this case the particle is located on the sphere Sm
ct and the probability of this event is

Pr
{
X(t) ∈ Sm

ct

} = e−λt .

If one or more than one Poisson events occur, the particle is located strictly inside the
ball Bm

ct , and the probability of this event is

Pr
{
X(t) ∈ Int Bm

ct

} = 1 − e−λt .

The part of the distribution Pr{X(t) ∈ dx} corresponding to this case is concentrated in the
interior

IntBm
ct = {

x = (x1, . . . , xm) ∈ R
m : x2

1 + · · · + x2
m < c2t2

}
,

and forms its absolutely continuous component.
Therefore there exists the density p(x, t) = p(x1, . . . , xm, t), x ∈ Int Bm

ct , t > 0, of the
absolutely continuous component of the distribution Pr{X(t) ∈ dx}.

If N(t) = n, the displacement of the particle X(t) at any time t > 0 is determined by the
coordinates

Xk(t) = c

n+1∑

j=1

(sj − sj−1)x
j

k , k = 1, . . . ,m, (2.1)

where x
j

k are the components of the independent m-dimensional random vectors xj =
(x

j

1 , . . . , x
j
m), j = 1, . . . , n + 1, uniformly distributed on the unit sphere Sm

1 ; the sj , j =
1, . . . , n represent the instants at which Poisson events occur, and s0 = 0, sn+1 = t .

Consider the conditional characteristic functions:

Hn(t) = E
{
ei(α,X(t)) | N(t) = n

}
, n ≥ 1, (2.2)
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where α = (α1, . . . , αm) ∈ R
m is the real m-dimensional vector of inversion parameters and

(α,X(t)) denotes the inner product of the vectors α and X(t).
By substituting (2.1) into (2.2) we have

Hn(t) = E

{

exp

(

ic

m∑

k=1

αk

n+1∑

j=1

(sj − sj−1)x
j

k

)}

= E

{

exp

(

ic

n+1∑

j=1

(sj − sj−1)(α,xj )

)}

, n ≥ 1,

where (α,xj ) is the inner product of the vectors α and xj . Computing the expectation in this
last equality we obtain

Hn(t) = n!
tn

∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

{
n+1∏

j=1

[
1

mes(Sm
1 )

∫

Sm
1

eic(τj −τj−1)(α,xj )μ(dxj )

]}

.

The surface integral over the unit sphere Sm
1 in this equality can be evaluated by means

of Lemma A1 of the Appendix, and is found to be

∫

Sm
1

eic(τj −τj−1)(α,xj )μ(dxj ) = (2π)m/2 J(m−2)/2(c(τj − τj−1)‖α‖)
(c(τj − τj−1)‖α‖)(m−2)/2

, (2.3)

where ‖α‖ =
√

α2
1 + · · · + α2

m and J(m−2)/2(x) is the Bessel function of the order (m − 2)/2
with real argument. Taking into account that

mes(Sm
1 ) = 2πm/2

�(m
2 )

, m ≥ 2,

we obtain

Hn(t) = n!
tn

∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

×
{

n+1∏

j=1

[
2(m−2)/2�

(
m

2

)
J(m−2)/2(c(τj − τj−1)‖α‖)
(c(τj − τj−1)‖α‖)(m−2)/2

]}

, n ≥ 1, (2.4)

(see [5, formula (2) therein], or [12, formula (2.3) therein]).
For the particular cases m = 2 (planar motion) and m = 4 (four-dimensional motion)

the conditional characteristic functions (2.4) were explicitly computed in Kolesnik and Ors-
ingher [7, formula (18) therein] and in Kolesnik [3, formula (10) therein], respectively. How-
ever, in the general case for arbitrary m ≥ 2 the expression on the right-hand side of (2.4)
seemingly cannot be explicitly evaluated.

By introducing the function

ϕ(t) = 2(m−2)/2�

(
m

2

)
J(m−2)/2(ct‖α‖)
(ct‖α‖)(m−2)/2

, m ≥ 2, (2.5)
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formula (2.4) can be rewritten as follows

Hn(t) = n!
tn

∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

{
n+1∏

j=1

ϕ(τj − τj−1)

}

. (2.6)

The integral factor in (2.6) can be rewritten in the following form

In(t) :=
∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

{
n+1∏

j=1

ϕ(τj − τj−1)

}

=
∫ t

0
dτ1

{
ϕ(τ1)

∫ t

τ1

dτ2

{
ϕ(τ2 − τ1)

×
∫ t

τ2

dτ3{ϕ(τ3 − τ2) . . .

∫ t

τn−2

dτn−1

{
ϕ(τn−1 − τn−2)

×
∫ t

τn−1

dτn{ϕ(τn − τn−1)ϕ(t − τn)}
}

· · ·
}}}

. (2.7)

The following theorem states that, for different n ≥ 1, the functions (2.7) are connected
with each other by a convolution-type recurrent relation.

Theorem 1 For any n ≥ 1 the following recurrent relation holds

In(t) =
∫ t

0
ϕ(t − τ)In−1(τ )dτ

=
∫ t

0
ϕ(τ)In−1(t − τ)dτ, n ≥ 1, (2.8)

where, by definition, I0(x) = ϕ(x).

Proof We will prove equality (2.8) by induction. From (2.7), for n = 1, we have

I1(t) =
∫ t

0
ϕ(τ)ϕ(t − τ)dτ

=
∫ t

0
ϕ(τ)I0(t − τ)dτ (2.9)

and therefore equality (2.8) is valid for n = 1.
Suppose that equality (2.8) is valid for all the numbers k ≤ n − 1, n ≥ 2. Consider the

interior integral (with respect to τn) in (2.7). Making in this integral the substitution ξ =
τn − τn−1 we obtain

∫ t

τn−1

ϕ(τn − τn−1)ϕ(t − τn)dτn =
∫ t−τn−1

0
ϕ(ξ)ϕ((t − τn−1) − ξ)dξ

= I1(t − τn−1) (2.10)
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according to (2.9) and induction assumption. The next interior integral (with respect to τn−1)
in (2.7) by means of the substitution ξ = τn−1 − τn−2 yields

∫ t

τn−2

ϕ(τn−1 − τn−2)I1(t − τn−1)dτn−1

=
∫ t−τn−2

0
ϕ(ξ)I1((t − τn−2) − ξ)dξ

= I2(t − τn−2)

according to (2.10) and induction assumption.
Continuing this process in the same manner, after the (n − 1)-th step we obtain

In(t) =
∫ t

0
ϕ(τ1)In−1(t − τ1)dτ1,

proving (2.8). The theorem is proved. �

Formula (2.8) can be rewritten in the following convolutional form

In(t) = ϕ(t) ∗ In−1(t) n ≥ 1. (2.11)

Corollary 1.1 For any n ≥ 1 the following relation holds

In(t) = [ϕ(t)]∗(n+1) , n ≥ 1, (2.12)

where the symbol ∗ (n + 1) means the (n + 1)-multiple convolution.

Proof Formula (2.12) automatically follows from (2.11) by means of the chain of equalities

In(t) = ϕ(t) ∗ In−1(t) = ϕ(t) ∗ ϕ(t) ∗ In−2(t) = · · · = [ϕ(t)]∗(n+1). �

Note that formula (2.12) enables us to immediately write down a formal series for the
characteristic function H(t) in terms of function ϕ(t), however we postpone doing that
till Sect. 4, where a strict justification of such a series, including the proof of its uniform
convergence, will be given.

Application of the Laplace transformation

L
[
f (t)

]
(s) =

∫ ∞

0
e−stf (t)dt, Re s > 0,

to the equality (2.12) leads to the following important result.

Corollary 1.2 For any n ≥ 1 the Laplace transform of functions (2.7) has the form

L[In(t)](s) = (L[ϕ(t)](s))n+1, n ≥ 1, Re s > 0. (2.13)

Proof The statement immediately follows from the main property of the Laplace transform
of convolutions. �

From Theorem 1 it also follows that the conditional characteristic functions are connected
with each other by an integral recurrent relation.
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Corollary 1.3 For any n ≥ 1 the conditional characteristic functions (2.6) satisfy the fol-
lowing recurrent relation

Hn(t) = n

tn

∫ t

0
τn−1ϕ(t − τ)Hn−1(τ )dτ, n ≥ 1, (2.14)

where H0(t) = ϕ(t).

Proof Multiplying (2.8) by (n!/tn), n ≥ 1, and taking into account (2.6) we obtain

Hn(t) = n

tn

∫ t

0
τn−1ϕ(t − τ)

[
(n − 1)!

τn−1
In−1(τ )

]
dτ

= n

tn

∫ t

0
τn−1ϕ(t − τ)Hn−1(τ )dτ. �

3 Laplace Transforms of Conditional Characteristic Functions

The results of the previous section show that the function ϕ(t) given by (2.5) plays a very
important role in our analysis. The reason is that ϕ(t) is exactly the characteristic function
(Fourier transform) of the uniform distribution on the surface of the sphere Sm

ct of radius ct.
From both the Theorem 1 and its corollaries we see that the conditional characteristic

functions Hn(t) and their Laplace transforms, in fact, are expressed in terms of function
ϕ(t). Formulae (2.12) and (2.13) show that the possibility of obtaining the explicit form
of the conditional characteristic functions (2.6) entirely depends on whether the multiple
convolutions of the function ϕ(t) with itself or exact inverse Laplace transforms of its powers
can be explicitly evaluated.

In the following theorem we present a general formula for the conditional characteristic
functions Hn(t) in terms of inverse Laplace transforms.

Theorem 2 For any n ≥ 1 and any t > 0 the conditional characteristic functions (2.6) are
given by

Hn(t) = n!
tn
L−1

[(
1

√
s2 + (c‖α‖)2

F

(
1

2
,
m − 2

2
; m

2
; (c‖α‖)2

s2 + (c‖α‖)2

))n+1
]

(t), (3.1)

where L−1 means the inverse Laplace transform and

F(ξ, η; ζ ; z) = 2F1(ξ, η; ζ ; z) =
∞∑

k=0

(ξ)k(η)k

(ζ )k

zk

k!

is the Gauss hypergeometric function.

Proof According to Formula 6.621(1) of Gradshteyn and Ryzhik [2] the Laplace transform
of the function (2.5) is

L[ϕ(t)](s) = 2(m−2)/2�

(
m

2

)
L

[
J(m−2)/2(ct‖α‖)
(ct‖α‖)(m−2)/2

]
(s)
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= 1
√

s2 + (c‖α‖)2
F

(
1

2
,
m − 2

2
; m

2
; (c‖α‖)2

s2 + (c‖α‖)2

)
, Re s > 0, (3.2)

for any m ≥ 2. Therefore, according to (2.13), we obtain

In(t) = L−1

[(
1

√
s2 + (c‖α‖)2

F

(
1

2
,
m − 2

2
; m

2
; (c‖α‖)2

s2 + (c‖α‖)2

))n+1
]

(t).

Substituting this into (2.6) we obtain (3.1). The theorem is proved. �

Remark 1 Although formula (3.1) is proved for any n ≥ 1 (and, as we have noted above,
this case corresponds to the absolutely continuous component of the distribution of X(t)),
one can easily show that formula (3.1) is also valid for n = 0 (and this case corresponds to
the singular component of the distribution).

Really, for n = 0, formula (3.1) formally yields

H0(t) = L−1

[
1

√
s2 + (c‖α‖)2

F

(
1

2
,
m − 2

2
; m

2
; (c‖α‖)2

s2 + (c‖α‖)2

)]
(t)

= 2(m−2)/2�

(
m

2

)
J(m−2)/2(ct‖α‖)
(ct‖α‖)(m−2)/2

, (3.3)

where we have used a formula of the inverse Laplace transform for the Gauss hypergeomet-
ric function (see [1, Table 5.19, formula 6]), (see also (3.2)).

On the other hand, by applying Lemma A1 of the Appendix it is easy to show that

H0(t) = E
{
ei(α,X(t))|N(t) = 0

}

= �(m
2 )

2πm/2(ct)m−1

∫

Sm
ct

ei(α,x)μ(dx)

= �(m
2 )

2πm/2

∫

Sm
1

eict (α,x)μ(dx)

= 2(m−2)/2�

(
m

2

)
J(m−2)/2(ct‖α‖)
(ct‖α‖)(m−2)/2

,

and this coincides with (3.3). As we have noted above, formula (3.3) represents the charac-
teristic function (Fourier transform) of the uniform distribution on the surface of the sphere
Sm

ct of radius ct.

Remark 2 By applying Formula 9.131(1) of Gradshteyn and Ryzhik [2] the hypergeometric
function can be rewritten as

1
√

s2 + (c‖α‖)2
F

(
1

2
,
m − 2

2
; m

2
; (c‖α‖)2

s2 + (c‖α‖)2

)
= 1

s
F

(
1

2
,1; m

2
;− (c‖α‖)2

s2

)
,

and therefore formula (3.1) has the following alternative form

Hn(t) = n!
tn
L−1

[(
1

s
F

(
1

2
,1; m

2
;− (c‖α‖)2

s2

))n+1
]

(t).
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Corollary 2.1 The characteristic function of the random vector X(t), t ≥ 0, has the follow-
ing series representation

H(t) = e−λt

∞∑

n=0

λnL−1

[(
1

s
F

(
1

2
,1; m

2
;− (c‖α‖)2

s2

))n+1
]

(t).

Proof The statement immediately follows from (3.1) and Remarks 1 and 2. �

Let us demonstrate how our technique developed above works in some important partic-
ular cases.

3.1 Two-dimensional case

In the planar case m = 2 and therefore the function (2.5) has the form

ϕ(t) = J0(ct‖α‖), ‖α‖ =
√

α2
1 + α2

2 .

Then, according to (2.13), we have

L[In(t)](s) = (L[J0(ct‖α‖)](s))n+1.

Taking into account (see, for instance [9, Table 8.4-1, formula 55] that

L [J0(ct‖α‖)] (s) = 1
√

s2 + (c‖α‖)2

we obtain

L [In(t)] (s) = 1

(s2 + (c‖α‖)2)(n+1)/2
.

According to Korn and Korn [9, Table 8.4-1, formula 57] the inverse Laplace transformation
of this function yields

In(t) = L−1

[
1

(s2 + (c‖α‖)2)(n+1)/2

]
(t)

=
√

π

�(n+1
2 )

(
t

2c‖α‖
)n/2

Jn/2(ct‖α‖).

Then the conditional characteristic functions (2.6) have the form

Hn(t) = n!√π

2n/2�(n+1
2 )

Jn/2(ct‖α‖)
(ct‖α‖)n/2

, n ≥ 1. (3.4)

By duplication formula for gamma-function we have

n! = �

(
2 · n + 1

2

)
= 2n

√
π

�

(
n + 1

2

)
�

(
n

2
+ 1

)
.

Substituting this into (3.4) we finally obtain

Hn(t) = 2n/2�

(
n

2
+ 1

)
Jn/2(ct‖α‖)
(ct‖α‖)n/2

, n ≥ 1, (3.5)
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and this coincides with formula (18) of Kolesnik and Orsingher [7] obtained by other more
complicated way.

We can come to the same result by using Theorem 2. From formula (3.1) and taking into
account Korn and Korn [9, Table 8.4-1, formula 57] we immediately get

Hn(t) = n!
tn
L−1

[
1

(s2 + (c‖α‖)2)(n+1)/2

]
(t)

= n!√π

2n/2�(n+1
2 )

Jn/2(ct‖α‖)
(ct‖α‖)n/2

,

and thus we again obtain (3.4).
The inverse Fourier transformation of the functions (3.5) with respect to α = (α1, α2)

leads to the following conditional distributions (see [7, Theorem 1])

Pr{X(t) ∈ dx | N(t) = n} = n

2π(ct)2

(
1 − ‖x‖2

c2t2

)(n−2)/2

μ(dx), n ≥ 1,

X(t) = (X1(t),X2(t)), x = (x1, x2) ∈ Int B2
ct, ‖x‖2 = x2

1 + x2
2 ,

μ(dx) = dx1dx2,

where B2
ct is the planar disc of radius ct.

3.2 Four-dimensional case

In this case m = 4 and therefore the function (2.5) takes the form

ϕ(t) = 2
J1(ct‖α‖)

ct‖α‖ , ‖α‖ =
√

α2
1 + α2

2 + α2
3 + α2

4 .

According to (2.13), we have

L[In(t)](s) = 2n+1

(
L

[
J1(ct‖α‖)

ct‖α‖
]
(s)

)n+1

.

Taking into account (see, for instance [9, Table 8.4-1, formula 58]) that

L
[

J1(ct‖α‖)
ct‖α‖

]
(s) = 1

(c‖α‖)2

(√
s2 + (c‖α‖)2 − s

)

we obtain

L [In(t)] (s) = 2n+1

(c‖α‖)2n+2

(√
s2 + (c‖α‖)2 − s

)n+1
.

According to the same formula, the inverse Laplace transformation of this function yields

In(t) = 2n+1

(c‖α‖)2n+2
L−1

[(√
s2 + (c‖α‖)2 − s

)n+1
]

(t)

= 2n+1(n + 1)

(c‖α‖)n+1

Jn+1(ct‖α‖)
t

.
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Then the conditional characteristic functions (2.6) have the form

Hn(t) = n!
tn

2n+1(n + 1)

(c‖α‖)n+1

Jn+1(ct‖α‖)
t

= 2n+1(n + 1)!Jn+1(ct‖α‖)
(ct‖α‖)n+1

, n ≥ 1, (3.6)

and this coincides with formula (10) of Kolesnik [3] obtained by other method.
The same result can be obtained directly from Theorem 2. Really, formula (3.1) yields

Hn(t) = n!
tn
L−1

[(
1

√
s2 + (c‖α‖)2

F

(
1

2
,1;2; (c‖α‖)2

s2 + (c‖α‖)2

))n+1
]

(t).

By applying Formula 9.121(24) of Gradshteyn and Ryzhik [2] we can easily show that

F

(
1

2
,1;2; (c‖α‖)2

s2 + (c‖α‖)2

)
= 2

√
s2 + (c‖α‖)2

s + √
s2 + (c‖α‖)2

, Re s > 0, (3.7)

and, therefore,

Hn(t) = 2n+1n!
tn

L−1

[(
s +

√
s2 + (c‖α‖)2

)−(n+1)
]

(t).

According to Bateman and Erdelyi [1, Table 5.3, formula 43 or Table 5.4, formula 21]

L−1

[(
s +

√
s2 + (c‖α‖)2

)−(n+1)
]

(t) = (c‖α‖)−(n+1)(n + 1)
Jn+1(ct‖α‖)

t
.

Hence,

Hn(t) = 2n+1n!
tn

(c‖α‖)−(n+1)(n + 1)
Jn+1(ct‖α‖)

t

= 2n+1(n + 1)!Jn+1(ct‖α‖)
(ct‖α‖)n+1

,

and thus we again obtain formula (3.6).
The inverse Fourier transformation of the functions (3.6) with respect to α = (α1, α2,

α3, α4) leads to the following conditional distributions (see [3, Theorem 1])

Pr{X(t) ∈ dx | N(t) = n} = n(n + 1)

π2(ct)4

(
1 − ‖x‖2

c2t2

)n−1

μ(dx), n ≥ 1,

X(t) = (X1(t),X2(t),X3(t),X4(t)), x = (x1, x2, x3, x4) ∈ Int B4
ct,

‖x‖2 = x2
1 + x2

2 + x2
3 + x2

4 , μ(dx) = dx1dx2dx3dx4,

where B4
ct is the four-dimensional ball of radius ct.
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3.3 Three-dimensional case

Our analysis loses its simplicity if m = 3. In this case the function (2.5) takes the form

ϕ(t) = √
2

√
π

2

J1/2(ct‖α‖)
(ct‖α‖)1/2

= sin(ct‖α‖)
ct‖α‖ , ‖α‖ =

√
α2

1 + α2
2 + α2

3 .

According to (2.13), we have

L[In(t)](s) = (c‖α‖)−(n+1)

(
L

[
sin(ct‖α‖)

t

]
(s)

)n+1

.

Taking into account (see, for instance [9, Table 8.4-1, formula 107]) that

L
[

sin(ct‖α‖)
t

]
(s) = arctg

c‖α‖
s

we obtain

L[In(t)](s) = (c‖α‖)−(n+1)

(
arctg

c‖α‖
s

)n+1

.

Thus,

In(t) = (c‖α‖)−(n+1)L−1

[(
arctg

c‖α‖
s

)n+1
]

(t).

Therefore, according to (2.6), the conditional characteristic functions Hn(t) have the
following form

Hn(t) = n!
tn

(c‖α‖)−(n+1)L−1

[(
arctg

c‖α‖
s

)n+1]
(t), n ≥ 1. (3.8)

We now show how formula (3.8) can be derived directly from Theorem 2. According to
(3.1) we have

Hn(t) = n!
tn
L−1

[(
1

√
s2 + (c‖α‖)2

F

(
1

2
,

1

2
; 3

2
; (c‖α‖)2

s2 + (c‖α‖)2

))n+1
]

(t). (3.9)

By applying formula 9.121(26) of Gradshteyn and Ryzhik [2] it’s easy to see that

F

(
1

2
,

1

2
; 3

2
; (c‖α‖)2

s2 + (c‖α‖)2

)
=

√
s2 + (c‖α‖)2

c‖α‖ arcsin

(
c‖α‖

√
s2 + (c‖α‖)2

)

=
√

s2 + (c‖α‖)2

c‖α‖ arctg
c‖α‖

s
. (3.10)

Substituting this into (3.9) we obtain (3.8).
The inverse Laplace transform on the right-hand side of (3.8), apparently, cannot be ex-

plicitly computed for arbitrary n ≥ 1. However, for the important particular case n = 1 (cor-
responding to the single change of direction) expression (3.8) can be evaluated explicitly.
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From (3.8) and taking into account formula (7.4) of Lemma A2 of the Appendix (see below),
we obtain

H1(t) = 1

t
(c‖α‖)−2L−1

[(
arctg

c‖α‖
s

)2]
(t)

= 1

(ct‖α‖)2

[
sin(ct‖α‖)Si(2ct‖α‖) + cos(ct‖α‖)Ci(2ct‖α‖)], (3.11)

where the functions Si(x) and Ci(x) are the incomplete integral sine and cosine, respectively,
given by (7.3) (see below).

The expression (3.11) coincides with formula (6) of Kolesnik [4]. Its inverse Fourier
transformation with respect to α = (α1, α2, α3) leads to the following conditional distribu-
tion (see [4])

Pr{X(t) ∈ dx | N(t) = 1} = 1

4π(ct)2‖x‖ ln

(
ct + ‖x‖
ct − ‖x‖

)
μ(dx),

X(t) = (X1(t),X2(t),X3(t)), x = (x1, x2, x3) ∈ Int B3
ct,

‖x‖ =
√

x2
1 + x2

2 + x2
3 , μ(dx) = dx1dx2dx3, (3.12)

where B3
ct is the three-dimensional ball of radius ct. Formula (3.12) represents the discon-

tinuous term of the distribution of the random vector X(t), t > 0. Note that (3.12) is similar,
for c = 1, to the second term of formulae (1.3) and (4.21) of Stadje [16].

4 Integral Equation for Characteristic Function

According to (2.6), the characteristic function of X(t), t ≥ 0, is given by the formal series

H(t) = E
{
ei(α,X(t))

}

= e−λt

∞∑

n=0

(λt)n

n! Hn(t)

= e−λt

∞∑

n=0

λnIn(t). (4.1)

We now prove that the series on the right-hand side of (4.1) converges uniformly (with
respect to ‖α‖) for any t ≥ 0. The easily checked inequality

∣∣∣∣
Jν(x)

xν

∣∣∣∣ ≤ 1

2ν�(ν + 1)
, ν ≥ 0,

implies

|ϕ(t)| = 2(m−2)/2�

(
m

2

)∣∣∣∣
J(m−2)/2(ct‖α‖)
(ct‖α‖)(m−2)/2

∣∣∣∣ ≤ 1 (4.2)

for any m ≥ 2. By induction it is easy to show that for any n ≥ 1 the following equality holds
∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn = tn

n! , n ≥ 1. (4.3)



Random Motions at Finite Speed in Higher Dimensions 1053

Therefore, taking into account (4.2), (4.3) and remembering that I0(t) = ϕ(t), we obtain
∣∣∣
∣∣

∞∑

n=0

λnIn(t)

∣
∣∣
∣∣
≤ |ϕ(t)| +

∞∑

n=1

λn

∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

{
n+1∏

j=1

|ϕ(τj − τj−1)|
}

≤ 1 +
∞∑

n=1

λn

∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

= 1 +
∞∑

n=1

λntn

n!
= eλt < ∞

for any t ≥ 0 and all ‖α‖. Hence, the series in (4.1) converges uniformly with respect to
‖α‖ for any t ≥ 0 and, therefore, it uniquely determines some smooth function which, being
multiplied by e−λt , produces the characteristic function H(t) of the random vector X(t),
t ≥ 0.

In the following theorem we present an integral equation for the function H(t) and its
explicit form in terms of function ϕ(t).

Theorem 3 The characteristic function H(t), t ≥ 0, satisfies the following convolution-type
Volterra integral equation of second kind with the continuous kernel e−λtϕ(t):

H(t) = e−λtϕ(t) + λ

∫ t

0
e−λ(t−τ)ϕ(t − τ)H(τ)dτ, t ≥ 0. (4.4)

In the class of continuous functions the integral equation (4.4) has the unique solution
given by

H(t) = e−λt

∞∑

n=0

λn[ϕ(t)]∗(n+1). (4.5)

Proof According to Theorem 1 and (4.1), we have

H(t) = e−λt

∞∑

n=0

λnIn(t)

= e−λt

{

ϕ(t) +
∞∑

n=1

λn

∫ t

0
ϕ(t − τ)In−1(τ )dτ

}

(uniform convergence of the series)

= e−λt

{

ϕ(t) +
∫ t

0
ϕ(t − τ)

( ∞∑

n=1

λnIn−1(τ )

)

dτ

}

= e−λt

{

ϕ(t) +
∫ t

0
ϕ(t − τ)

( ∞∑

n=0

λn+1In(τ )

)

dτ

}

= e−λt

{

ϕ(t) + λ

∫ t

0
ϕ(t − τ)

( ∞∑

n=0

λnIn(τ )

)

dτ

}
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= e−λt

{
ϕ(t) + λ

∫ t

0
ϕ(t − τ)eλτH(τ)dτ

}

= e−λtϕ(t) + λ

∫ t

0
e−λ(t−τ)ϕ(t − τ)H(τ)dτ

proving (4.4).
The integral equation (4.4) can be rewritten in the following convolutional form

H(t) = e−λtϕ(t) + λ[(e−λtϕ(t)) ∗ H(t)], t ≥ 0. (4.6)

By direct substituting (4.5) into (4.6) we can easily check that the function (4.5) is really
the solution to the convolutional equation (4.6). Its uniqueness follows from the well-known
fact that any Volterra integral equation of second kind with continuous kernel has the unique
solution in the class of continuous functions for any λ and arbitrary continuous free term.
Thus, the theorem is completely proved. �

We should note that, although formula (4.5) gives the general form of the characteristic
function H(t), the multiple convolutions of the function ϕ(t) with itself seemingly cannot
be explicitly evaluated in arbitrary dimension.

Remark 3 From (4.6) we immediately obtain the general formula for the Laplace transform
of the characteristic function H(t):

L[H(t)](s) = L[ϕ(t)](s + λ)

1 − λL[ϕ(t)](s + λ)
, Re s > 0. (4.7)

By using (3.2) we can rewrite (4.7) in the explicit form

L[H(t)](s) =
F( 1

2 , m−2
2 ; m

2 ; (c‖α‖)2

(s+λ)2+(c‖α‖)2 )
√

(s + λ)2 + (c‖α‖)2 − λF( 1
2 , m−2

2 ; m
2 ; (c‖α‖)2

(s+λ)2+(c‖α‖)2 )
. (4.8)

In particular, in the planar case (m = 2) formula (4.8) takes the form

L[H(t)](s) = 1
√

(s + λ)2 + (c‖α‖)2 − λ
,

and this coincides with formula (12) of Masoliver et al. [11].
In the three-dimensional case (m = 3), in view of (3.10), formula (4.8) yields

L[H(t)](s) = arctg(
c‖α‖
s+λ

)

c‖α‖ − λarctg(
c‖α‖
s+λ

)
.

This exactly coincides with formula (45) of Masoliver et al. [11] and, for c = 1, with for-
mulae (1.6) and (5.8) of Stadje [16].

Finally, in the four-dimensional case (m = 4), in view of (3.7), formula (4.8) becomes

L[H(t)](s) = 2

s + √
(s + λ)2 + (c‖α‖)2 − λ

.
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Remark 4 Similarly to Theorem 3 one can show that the characteristic function of the ab-
solutely continuous component of the distribution of X(t), t > 0, defined by

H̃ (t) = e−λt

∞∑

n=1

λnIn(t),

satisfies the Volterra integral equation

H̃ (t) = λe−λtI1(t) + λ

∫ t

0
e−λ(t−τ)ϕ(t − τ)H̃ (τ )dτ, t > 0, (4.9)

where I1(t) is given by (2.9).
Equation (4.9) can be rewritten in the convolutional form as follows

H̃ (t) = λe−λt [ϕ(t) ∗ ϕ(t)] + λ
[(

e−λtϕ(t)
) ∗ H̃ (t)

]
, t > 0. (4.10)

Therefore, the Laplace transform of the function H̃ (t) has the form

L[H̃ (t)](s) = λ{L[ϕ(t)]}2(s + λ)

1 − λL[ϕ(t)](s + λ)
, Re s > 0. (4.11)

One can easily check that the function

H̃ (t) = e−λt

∞∑

n=1

λn[ϕ(t)]∗(n+1). (4.12)

is the unique continuous solution to (4.10).
From (4.9) it follows as well that the function

H(t) = eλt H̃ (t) =
∞∑

n=1

λnIn(t),

satisfies the more simple Volterra integral equation

H(t) = λI1(t) + λ

∫ t

0
ϕ(t − τ)H(τ)dτ, t > 0, (4.13)

or, in the convolutional form,

H(t) = λ[ϕ(t) ∗ ϕ(t)] + λ[ϕ(t) ∗ H(t)], t > 0. (4.14)

The Laplace transform of the function H(t) is given by

L[H(t)](s) = λ{L[ϕ(t)](s)}2

1 − λL[ϕ(t)](s) , Re s > 0, (4.15)

and the function

H(t) =
∞∑

n=1

λn[ϕ(t)]∗(n+1). (4.16)

is the unique continuous solution to (4.14).



1056 A.D. Kolesnik

Remark 5 Here we give the complete solution of the long-standing problem of finding the
initial conditions for the partial differential equations governing random evolutions. Al-
though such governing equations are known for the one and two-dimensional evolutions
only, nevertheless Theorem 3 enables us to write down initial conditions for any dimension
without knowing any special differential relations.

The equality

lim
x→0

Jν(x)

xν
= 1

2ν�(ν + 1)
, ν ≥ 0,

implies

ϕ(t)|t=0 = 1. (4.17)

Then we obtain from (4.4)

H(t)|t=0 = 1. (4.18)

Therefore, the transition density f (x, t), x ∈ R
m, t ≥ 0, of the process X(t) satisfies the

first initial condition

f (x, t)|t=0 = δ(x), (4.19)

where δ(x) is the m-dimensional Dirac delta-function. The condition (4.19) expresses the
obvious fact that at the initial moment t = 0 the distribution is entirely concentrated in the
origin.

The difficulty of finding the second initial condition was pointed out by many authors.
Theorem 3 enables us to easily obtain the second initial condition without any additional
differential relations. Really, differentiating (4.4) with respect to t we have

∂H(t)

∂t
= −λe−λtϕ(t) + e−λt ∂ϕ(t)

∂t
+ λH(t) + λ

∫ t

0

∂

∂t

[
e−λ(t−τ)ϕ(t − τ)

]
H(τ)dτ.

Then, by taking into account (4.17), (4.18) and the easily checked equality

∂ϕ(t)

∂t

∣∣∣∣
t=0

= 0, (4.20)

we immediately obtain

∂H(t)

∂t

∣∣∣∣
t=0

= 0. (4.21)

Therefore the second initial condition in any dimension has the form

∂f (x, t)

∂t

∣∣∣∣
t=0

= 0. (4.22)

If necessary, we are able to continue this procedure and find the next initial conditions
for the characteristic function H(t). For instance, by differentiating (4.4) twice with respect
to t , we have
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∂2H(t)

∂t2
= λ2e−λtϕ(t) − 2λe−λt ∂ϕ(t)

∂t
+ e−λt ∂

2ϕ(t)

∂t2

+ λ
∂H(t)

∂t
− λ2H(t) + λ

∫ t

0

∂2

∂t2

[
e−λ(t−τ)ϕ(t − τ)

]
H(τ)dτ.

From this, by taking into account (4.17), (4.18), (4.20), (4.21) and the easily checked equal-
ity

∂2ϕ(t)

∂t2

∣∣∣∣
t=0

= − (c‖α‖)2

m
,

we obtain

∂2H(t)

∂t2

∣∣∣∣
t=0

= − (c‖α‖)2

m
.

It’s interesting to note that this formula explicitly depends on the dimension m.

5 Limit Theorem

One of the most remarkable features of the transport processes in lower dimensions is their
weak convergence to the Brownian motions as both the particle’s speed c and the intensity
of switches λ tend to infinity in such a way that the following Kac condition holds

c → ∞, λ → ∞,
c2

λ
→ ρ, ρ > 0. (5.1)

Our technique enables us to extend this very important result for the isotropic transport
process in the Euclidean space R

m of arbitrary dimension m ≥ 2.

Theorem 4 Under the Kac condition (5.1) the transition density of the isotropic transport
process X(t) converges to the transition density of the homogeneous Brownian motion with
zero drift and diffusion coefficient σ 2 = 2ρ/m, that is,

lim
c,λ→∞

(c2/λ)→ρ

p(x, t) =
(

m

4ρπt

)m/2

exp

(
− m

4ρt
‖x‖2

)
, m ≥ 2, (5.2)

where ‖x‖2 = x2
1 + · · · + x2

m.

Proof Under the Kac condition (5.1) we have

lim
c,λ→∞

(c2/λ)→ρ

(c‖α‖)2

(s + λ)2 + (c‖α‖)2
= 0

and therefore

lim
c,λ→∞

(c2/λ)→ρ

F

(
1

2
,
m − 2

2
; m

2
; (c‖α‖)2

(s + λ)2 + (c‖α‖)2

)
= 1.
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Then by passing to the limit in (4.8) under the Kac condition (5.1) we obtain

lim
c,λ→∞

(c2/λ)→ρ

L[H(t)](s)

= lim
c,λ→∞

(c2/λ)→ρ

[√
(s + λ)2 + (c‖α‖)2 − λ F

(
1

2
,
m − 2

2
; m

2
; (c‖α‖)2

(s + λ)2 + (c‖α‖)2

)]−1

= lim
c,λ→∞

(c2/λ)→ρ

[

(s + λ)

√

1 +
(

c‖α‖
s + λ

)2

− λ

∞∑

k=0

( 1
2 )k(

m−2
2 )k

(m
2 )k

1

k!
(

(c‖α‖)2

(s + λ)2 + (c‖α‖)2

)k
]−1

(5.3)

From the Kac condition (5.1) it follows that for sufficiently large c and λ the inequality

∣∣∣∣
c‖α‖
s + λ

∣∣∣∣ < 1

holds for any s and ‖α‖. Therefore, the radical in (5.3) can be represented in the form of the
absolutely converging series

√

1 +
(

c‖α‖
s + λ

)2

= 1 + 1

2

(
c‖α‖
s + λ

)2

− 1 · 1

2 · 4

(
c‖α‖
s + λ

)4

+ 1 · 1 · 3

2 · 4 · 6

(
c‖α‖
s + λ

)6

− · · · .

Substituting this into (5.3) we can rewrite it as follows

lim
c,λ→∞

(c2/λ)→ρ

L[H(t)](s)

= lim
c,λ→∞

(c2/λ)→ρ

[

(s + λ)

(

1 + 1

2

(
c‖α‖
s + λ

)2

− 1 · 1

2 · 4

(
c‖α‖
s + λ

)4

+ · · ·
)

− λ

(

1 +
(

1
2

)
1

(
m−2

2

)
1(

m
2

)
1

(c‖α‖)2

(s + λ)2 + (c‖α‖)2

+ 1

2!
( 1

2 )2(
m−2

2 )2

(m
2 )2

(
(c‖α‖)2

(s + λ)2 + (c‖α‖)2

)2

+ . . .

)]−1

= lim
c,λ→∞

(c2/λ)→ρ

[
s + λ + 1

2

(c‖α‖)2

s + λ
− 1 · 1

2 · 4

(c‖α‖)4

(s + λ)3
+ · · ·

− λ − ( 1
2 )1(

m−2
2 )1

(m
2 )1

λ(c‖α‖)2

(s + λ)2 + (c‖α‖)2

− 1

2!
( 1

2 )2(
m−2

2 )2

(m
2 )2

λ(c‖α‖)4

((s + λ)2 + (c‖α‖)2)2
− · · ·

]−1
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= lim
c,λ→∞

(c2/λ)→ρ

[
s + 1

2

c2

λ
‖α‖2

s
λ

+ 1
− 1 · 1

2 · 4

c4

λ3 ‖α‖4

( s
λ

+ 1)3
+ · · ·

− ( 1
2 )1(

m−2
2 )1

(m
2 )1

c2

λ
‖α‖2

( s
λ

+ 1)2 + c2

λ2 ‖α‖2

− 1

2!
( 1

2 )2(
m−2

2 )2

(m
2 )2

c4

λ3 ‖α‖4

(( s
λ

+ 1)2 + c2

λ2 ‖α‖2)2
− · · ·

]−1

Taking into account that, under the Kac condition (5.1), (cn/λn−1) → 0 for any n ≥ 3
(see also [8, formula (4.4)]), we obtain

lim
c,λ→∞

(c2/λ)→ρ

L[H(t)](s) =
[
s + 1

2
ρ‖α‖2 − ( 1

2 )1(
m−2

2 )1

(m
2 )1

ρ‖α‖2

]−1

.

It’s easy to check that

( 1
2 )1(

m−2
2 )1

(m
2 )1

= m − 2

2m
, m ≥ 2.

Thus, we finally obtain

lim
c,λ→∞

(c2/λ)→ρ

L[H(t)](s) =
(

s + ρ‖α‖2

m

)−1

. (5.4)

Inverse Laplace transformation of the function (5.4) yields

L−1

[(
s + ρ‖α‖2

m

)−1
]

(t) = exp

(
−ρ‖α‖2

m
t

)
, (5.5)

where we have used Bateman and Erdelyi [1, Table 5.2, formula 1]. The function on the
right-hand side of (5.5) is the characteristic function of the m-dimensional homogeneous
Brownian motion with zero drift and diffusion coefficient σ 2 = 2ρ/m.

By applying the Hankel inversion formula we can easily show that the inverse Fourier
transformation F−1 of the function on the right-hand side of (5.5) yields

w(x, t) = F−1
[
e−(ρ‖α‖2t)/m

] =
(

m

4ρπt

)m/2

exp

(
−m‖x‖2

4ρt

)
, (5.6)

and this coincides with the function on the right-hand side of (5.2). The theorem is thus
completely proved. �

The function (5.6) is exactly the transition density of the m-dimensional homogeneous
Brownian motion with zero drift and diffusion coefficient σ 2 = 2ρ/m. This entirely ac-
cords with some previous results concerning the limiting behaviour of isotropic transport
processes (see, for comparison, Papanicolaou [13, p. 353, the Theorem], Pinsky [14, Propo-
sition 4.8]).
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It’s easy to see that if m = 2 and ρ = 1, the density (5.6) turns into the transition density
of the two-dimensional standard Brownian motion (see [7, p. 1181]). For m = 4 and ρ = 1
the density (5.6) turns into the transition density of the four-dimensional Brownian motion
obtained in Kolesnik [3, formula (21)]. Note also that if we set ρ = m/2, the limiting process
becomes the m-dimensional standard homogeneous Brownian motion with zero drift and
diffusion coefficient σ 2 = 1.

We can easily check that the density (5.6) is the fundamental solution to the m-
dimensional heat equation

∂w(x, t)

∂t
= ρ

m
�w(x, t), (5.7)

where � denotes the m-dimensional Laplacian. For ρ = 1 the differential operator on the
right-hand side of (5.7) exactly coincides with the generator obtained by Pinsky [14, Propo-
sition 4.8].

6 Non-Symmetrical Random Motions

The basic feature of the motion studied above was the uniform choice of both the initial
and each new direction at every Poissonian instant. This key property provided the ab-
solute spatial symmetry of the process X(t). The symmetrical structure of X(t) is clearly
seen from the form of its characteristic functions Hn(t) and H(t) which contain the inver-

sion multi-parameter α = (α1, . . . , αm) as the symmetric functional ‖α‖ =
√

α2
1 + · · · + α2

m.
Surprisingly, the majority of the results obtained above keep their validity also for the non-
symmetrical motions.

Suppose that both the initial and every new direction are taken on according to some
arbitrary distribution on the unit sphere Sm

1 . Let χ(x), x ∈ Sm
1 , denote the density of this

distribution, assumed to exist. Let Z(t) = (Z1(t), . . . ,Zm(t)) be the particle’s position at an
arbitrary instant t > 0. Consider the conditional characteristic functions (Fourier transform)

Gn(t) = E
{
ei(α,Z(t))|N(t) = n

}
, n ≥ 1, (6.1)

where α = (α1, . . . , αm) ∈ R
m is the real m-dimensional vector of inversion parameters.

Similarly to the symmetrical case, the functions (6.1) can be written as follows

Gn(t) = n!
tn

∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

{
n+1∏

j=1

[∫

Sm
1

eic(τj −τj−1)(α,xj ) χ(xj ) μ(dxj )

]}

. (6.2)

By introducing the function

ψ(t) =
∫

Sm
1

eict (α,x)χ(x)μ(dx) (6.3)

we can rewrite (6.2) in the following form

Gn(t) = n!
tn

∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

{
n+1∏

j=1

ψ(τj − τj−1)

}

, n ≥ 1. (6.4)

Note that the function ψ(t) given by (6.3) represents the characteristic function (Fourier
transform) of the density χ(x) on the surface of the sphere Sm

ct of radius ct.
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Denote the integral factor in (6.4) as follows

Jn(t) =
∫ t

0
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τn−1

dτn

{
n+1∏

j=1

ψ(τj − τj−1)

}

, n ≥ 1. (6.5)

The following non-symmetrical counterparts of Theorem 1 and its corollaries take place.

Theorem 5 For any n ≥ 1 the following recurrent relation holds

Jn(t) =
∫ t

0
ψ(t − τ)Jn−1(τ )dτ

=
∫ t

0
ψ(τ)Jn−1(t − τ)dτ, n ≥ 1, (6.6)

where, by definition, J0(x) = ψ(x).

Formula (6.6) can be rewritten in the following convolutional form

Jn(t) = ψ(t) ∗Jn−1(t) n ≥ 1. (6.7)

Corollary 5.1 For any n ≥ 1 the following relation holds

Jn(t) = [
ψ(t)

]∗(n+1)
, n ≥ 1, (6.8)

where the symbol ∗(n + 1) means the (n + 1)-multiple convolution.

Corollary 5.2 For any n ≥ 1 the Laplace transform of functions (6.5) has the form

L[Jn(t)](s) = (L[ψ(t)](s))n+1 , n ≥ 1. (6.9)

Corollary 5.3 For any n ≥ 1 the conditional characteristic functions (6.4) satisfy the fol-
lowing recurrent relation

Gn(t) = n

tn

∫ t

0
τn−1ψ(t − τ)Gn−1(τ )dτ, n ≥ 1, (6.10)

where G0(t) = ψ(t).

The proofs of Theorem 5 and Corollaries 5.1, 5.2, 5.3 are the simple recompilations of
the proofs of Theorem 1 and Corollaries 1.1, 1.2, 1.3, respectively, in which the function
ϕ(t) is everywhere replaced by the function ψ(t) and, therefore, omitted.

The characteristic function of Z(t) given by the uniformly converging series

G(t) = E
{
ei(α,Z(t))

} = e−λt

∞∑

n=0

(λt)n

n! Gn(t) = e−λt

∞∑

n=0

λnJn(t). (6.11)

satisfies a Volterra integral equation. This result is given by the following theorem.
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Theorem 6 The characteristic function G(t), t ≥ 0, satisfies the following convolution-type
Volterra integral equation of second kind with the continuous kernel e−λtψ(t):

G(t) = e−λtψ(t) + λ

∫ t

0
e−λ(t−τ)ψ(t − τ)G(τ)dτ, t ≥ 0. (6.12)

In the class of continuous functions the integral equation (6.12) has the unique solution
given by

G(t) = e−λt

∞∑

n=0

λn
[
ψ(t)

]∗(n+1)
. (6.13)

The proof is similar to the proof of Theorem 3, and therefore omitted.
The integral equation (6.12) can be rewritten in the following convolutional form

G(t) = e−λtψ(t) + λ[(e−λtψ(t)) ∗ G(t)], t ≥ 0. (6.14)

From this we obtain the general formula for the Laplace transform of the characteristic
function G(t):

L[G(t)](s) = L[ψ(t)](s + λ)

1 − λL[ψ(t)](s + λ)
, Re s > 0. (6.15)

One can show that the characteristic function of the absolutely continuous component of
the distribution of Z(t), t > 0, defined by

G̃(t) = e−λt

∞∑

n=1

λn Jn(t),

satisfies the Volterra integral equation

G̃(t) = λe−λtJ1(t) + λ

∫ t

0
e−λ(t−τ)ψ(t − τ)G̃(τ )dτ, t > 0, (6.16)

where

J1(t) = ψ(t) ∗ ψ(t) =
∫ t

0
ψ(τ)ψ(t − τ)dτ.

Equation (6.16) can be rewritten in the convolutional form as follows

G̃(t) = λe−λt [ψ(t) ∗ ψ(t)] + λ
[(

e−λtψ(t)
) ∗ G̃(t)

]
, t > 0. (6.17)

Therefore, the Laplace transform of the function G̃(t) has the form

L
[
G̃(t)

]
(s) = λ{L[ψ(t)]}2(s + λ)

1 − λL[ψ(t)](s + λ)
, Re s > 0. (6.18)

One can easily check that the function

G̃(t) = e−λt

∞∑

n=1

λn[ψ(t)]∗(n+1). (6.19)

is the unique continuous solution to (6.17).
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Appendix

In this Appendix we prove two auxiliary lemmas which have been used in our analysis.
The first one concerns the integration of a complex exponential over the surface of the unit
sphere Sm

1 .

Lemma A1 For any dimension m ≥ 2 and for arbitrary real constant C the following rela-
tion holds

∫

Sm
1

eiC(α,x)μ(dx) = (2π)m/2 J(m−2)/2(C‖α‖)
(C‖α‖)(m−2)/2

. (7.1)

Proof According to Formula 4.644 of Gradshteyn and Ryzhik [2], for any m ≥ 2, we have
∫

Sm
1

eiC(α,x)μ(dx) =
∫

· · ·
∫

x2
1+···+x2

m=1
eiC(α1x1+···+αmxm)dx1 . . . dxm

= 2π(m−1)/2

�(m−1
2 )

∫ π

0
eiC‖α‖ cos θ (sin θ)m−2dθ

= (2π)m/2 J(m−2)/2(C‖α‖)
(C‖α‖)(m−2)/2

,

where in the last step we have used the well-known integral representation of the Bessel
function (see, for instance [2, Formula 8.411(7)]). The lemma is proved. �

Note that for m = 2 formula (7.1) yields the well-known integral representation
∫

S2
1

eiC(α,x)μ(dx) =
∫∫

x2
1 +x2

2=1
eiC(α1x1+α2x2)dx1dx2

=
∫ 2π

0
eiC(α1 cos θ+α2 sin θ)dθ

= 2πJ0(C‖α‖).
For m = 3 equality (7.1) transforms into the well-known formula

∫

S3
1

eiC(α,x)μ(dx) =
∫∫∫

x2
1 +x2

2+x2
3=1

eiC(α1x1+α2x2+α3x3)dx1dx2dx3

= (2π)3/2 J1/2(C‖α‖)
(C‖α‖)1/2

= 4π
sin(C‖α‖)

C‖α‖ .

The second auxiliary lemma concerns the Laplace transform and inverse Laplace trans-
form which have been used in Sect. 3.3. This lemma is of a separate interest because, to
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the best of our knowledge, there are no formulae similar to (7.2) or (7.4) (see below) in the
handbooks on integral transforms, including those in the reference list.

Lemma A2 For arbitrary real constant k the following formula holds

L
[

sin(kt)

t
Si(2kt) + cos(kt)

t
Ci(2kt)

]
(s) =

(
arctg

k

s

)2

, Re s > 0, (7.2)

where L means the Laplace transform and the functions Si(x) and Ci(x) are the incomplete
integral sine and cosine, respectively, given by

Si(x) =
∫ x

0

sin ξ

ξ
dξ, Ci(x) =

∫ x

0

cos ξ − 1

ξ
dξ. (7.3)

The inverse Laplace transformation of (7.2) yields

L−1

[(
arctg

k

s

)2
]

(t) = 1

t
[sin(kt)Si(2kt) + cos(kt)Ci(2kt)]. (7.4)

Proof We have

sin(kt)

t
∗ sin(kt)

t
=

∫ t

0

sin(kτ )

τ

sin(k(t − τ))

t − τ
dτ

= 1

t

∫ t

0
sin(kτ ) sin(k(t − τ))

(
1

τ
+ 1

t − τ

)
dτ

= 2

t

∫ t

0

sin(kτ ) sin(k(t − τ))

τ
dτ

= 2

t

∫ t

0

sin(kτ )

τ
[sin(kt) cos(kτ ) − sin(kτ ) cos(kt)]dτ

= sin(kt)

t

∫ t

0

2 sin(kτ ) cos(kτ )

τ
dτ − cos(kt)

t

∫ t

0

2 sin2(kτ )

τ
dτ

= sin(kt)

t

∫ t

0

sin(2kτ)

τ
dτ − cos(kt)

t

∫ t

0

1 − cos(2kτ)

τ
dτ

= sin(kt)

t
Si(2kt) + cos(kt)

t
Ci(2kt).

Applying now the Laplace transformation to both sides of this equality and taking into
account that

L
[

sin(kt)

t

]
(s) = arctg

k

s

(see, for instance [9, Table 8.4-1, formula 107]) we obtain (7.2). The lemma is proved. �
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